Fraction of Expired Oxygen: A Novel Safety Approach to Monitor Oxygen Delivery to the Heart Lung Machine Oxygenator

Rithy Srey, CCP, Geoffrey Rance, CCP, Jacquelyn Quin, MD, Kay Leissner, MD, Houman Amirfarzan, MD, John Handrahan, CCP, Miguel Haime, MD, Marco A Zenati, MD

Objective: Monitoring O₂ delivery to the oxygenator of a heart lung machine is typically accomplished with an O₂ analyzer on the gas inflow (FiO₂). It was hypothesized that fraction of expired oxygen (FEO₂) exhaust port monitoring is a more dependable approach. If gas of any FiO₂ greater than 21% entered the inlet of the oxygenator, then the FEO₂ exiting the oxygenator would be greater than 21%. A FEO₂ of 21% or lower would indicate that oxygen was not being delivered to the oxygenator.

Methods: The FiO₂ was initiated at 21%, and increased by increments of 5%. The FEO₂ was recorded at each FiO₂. This was completed at sweep rates of 2, 3, and 4L/min. The O₂ line was also disconnected from the oxygenator and the changes in the FEO₂ noted.

Results: At every sweep rate, and FiO₂ settings greater than 21%, the FEO₂ was greater than 21% (Figure 1). When the oxygen line was disconnected from the oxygenator, the FEO₂ dropped to 21% within 5 seconds.

![Graph showing FEO₂ vs FiO₂](image)

Figure 1. The FEO₂ resulting from the FiO₂ at varying sweep rates. The dashed yellow line indicates an FEO₂ of 21%

Conclusion: Monitoring the FEO₂ is a more reliable way to verify O₂ delivery to an oxygenator. If the O₂ line stops functioning or becomes disconnected, the FEO₂ will drop to 21% within seconds. Relying on FiO₂ monitoring alone will never provide evidence of a disconnected O₂ line.