1966 ANNUAL MEETING PROGRAM

THE AMERICAN ASSOCIATION FOR THORACIC SURGERY
1965-1966

President
HERBERT C. MAIER New York

Vice-President
FREDERICK G. KERGIN Toronto

Secretary
HENRY T. BAHNSON Pittsburgh

Treasurer
C. ROLLINS HANLON St. Louis

Editor
BRIAN BLADES Washington, D. C.

Council
JOHN C. JONES (1966) Los Angeles
WILFRED G. BIGELOW (1966) Toronto
EDWARD M. KENT (1967) Pittsburgh
FRANK GERBODE (1968) San Francisco
DONALD B. EFFLER (1969) Cleveland

Membership Committee
JOHN W. KIRKLIN, Chairman Rochester, Minn.
PAUL C. ADKINS Washington, D. C.
WILFRED G. BIGELOW Toronto
DAVID J. DUGAN Oakland, Calif.
C. FREDERICK KITTLE Kansas City, Kan.
GEORGE P. ROSEMOND Philadelphia
FRANK C. SPENCER New York

Association Representatives
The Board of Thoracic Surgery
O. THERON CLAGETT Rochester, Minn.
JAMES V. MALONEY, JR. Los Angeles
PAUL W. SANGER Charlotte
J. GORDON SCANNELL Boston
Board of Governors, American College of Surgeons
H. WILLIAM SCOTT, JR. (1966) Nashville
DENTON A. COOLEY (1968) Houston

Monday Morning, May 16, 1966

8:30 A.M. Business Session (Limited to Members)
Ballroom

8:45 A.M. Scientific Session: REGULAR PROGRAM
Ballroom

1. Tumors of the Thoracic Skeleton: Diagnosis and Management
 A. OCHSNER, JR., GEORGE L. LUCAS*, and G. MCFARLAND*,
 New Orleans, La.

 In a 12 year period, 127 cases of bony and cartilaginous tumors involving the thoracic skeleton were studied in the Bone Pathology Laboratory. These cases have been reviewed. Sixty-nine were tumors of the ribs, 6 of the sternum, 15 of the thoracic vertebrae, 26 of the scapula and 14 of the clavicle (3 tumors involved more than one area). Forty-five were metastatic tumors, 36 were primary malignant tumors and 46 were primary benign tumors (includes 7 cases of fibrous dysplasia) The relative frequency of the different types of tumors is presented. The metastatic tumors were most commonly from the lung and breast. The primary malignant tumor most commonly encountered was the chondrosarcoma and the primary benign tumor seen most frequently was the osteochondroma. The presenting symptom varied with location and type but was usually pain, and in some instances a mass. The diagnostic problems are discussed, particularly the limits of X-ray and other laboratory studies and the questions relative to biopsy. Management, which is influenced by the type and location of the tumor, is discussed. Prognosis is evaluated.

2. Thymoma at the Massachusetts General Hospital
 EARLE W. WILKINS, JR., L. HENRY EDMUNDS, JR.*, and
 BENJAMIN CASTLEMAN*, Boston, Mass.

 A quarter century of experience with thymoma is presented in this review of cases treated at the Massachusetts General Hospital between 1939 and 1964. The series of 63 patients includes only those in whom tissue confirmation was obtained during life. Follow-up is complete; 52 patients were initially diagnosed at least 5 years previously Thirty-seven patients had associated myasthenia gravis; 26 presented no evidence of myasthenia. Factors discussed in detail include pathological classification, prognostic significance of invasive tumor and presence of myasthenia, the role of radiation, and the accuracy of the 10-year survival rate as opposed to the conventional 5-year period in determination of potential cure. Modern methods of post-operative management are emphasized, particularly in the myasthenic. Discrepancies of conclusions with previous series are discussed. The paper includes appropriate charts illustrating survival in relation to myasthenia gravis, encapsulated or invasive tumor, completeness of tumor excision, and use of irradiation.

3. Hyponatremia from Inappropriate Antidiuretic Hormone Elaboration in Carcinoma of the Lung
 C. PORTER CLAXTON, JR.*, HARRY T. MCPHERSON*, WILL C. SEALY, and
 W. GLENN YOUNG, JR., Durham, N.C.

 A variety of endocrine disturbances are known to be associated with carcinoma of the lung, but only rarely has the secretion of an inappropriate antidiuretic hormone been linked with this malignancy. Over an 18 month period three patients with carcinoma of the lung were discovered to have this latter endocrinopathy. The serum sodium in the patients was reduced to 108, 119, and 126 mEq/L respectively. All exhibited normal extracellular fluid volume, relatively hypertonic urine, and absence of renal and adrenal dysfunction. In two patients, symptoms of water intoxication were present; and in one a suspicion of cerebral metastasis was entertained. Management with fluid restriction to 800 to 1,000 cc. per day increased the serum sodium to 130 to 140 mEq/L In one patient improvement followed radiation to the lesion, while in another excision of all the known intrathoracic tumor failed to revert the electrolytes to normal levels in the immediate postoperative period. Though this occurs in a small percentage of patients with carcinoma of the lung, the striking symptoms as well as the ease with which symptoms can be controlled demands that this endocrinopathy be kept in mind in all patients with cancer of the lung.

4. Reoperation for Bronchogenic Carcinoma
 WILFORD B. NEPTUNE, FRANCIS M. WOODS, and RICHARD H. OVERHOLT,
 Boston, Mass.

 Thirteen patients have had a second pulmonary resection for broncho-genic carcinoma (from 2400 verified cases, with 1176 primary resections). All originally had had a favorable operation and good cardiopulmonary reserve. The new or recurrent tumor was discovered early, and the second operation was done for what appeared to be localized disease. One
patient initially had bilateral primary tumors treated with a staged resection of the lower lobes. Four patients had their second operation on the contra-lateral side; one had a wedge resection one year following a pneumonectomy; one had a bilateral, bisegmental resection; two had bilateral lobectomies. Eight patients were reoperated on the ipsilateral side: one had resection of the middle lobe following an initial resection of the upper lobe; the other seven had completion of the pneumonectomy. There was one postoperative death. Five patients have subsequently died. There are seven patients still - alive and well - from 15 to 136 months after the initial operation, and these are now from 5 to 93 months following the second operation.

5. Thoracic Outlet Syndrome

DAVID B. ROOS*, Denver, Colo.
Sponsored by WILLIAM R. WADDELL

Neurovascular compression in the shoulder region has long been recognized as a common and distressing problem, but the exact mechanism and site of compression are often not clearly understood. The numerous labels that have added more to the confusion than the understanding of the shoulder compression problems have been replaced by the single entity called thoracic outlet syndrome which leads to clearer understanding, more accurate diagnosis and more effective treatment. Compression of the brachial plexus and subclavian vessels against the first thoracic rib is the common denominator of all the syndromes, whether vascular or neurological. The various symptoms with which the syndrome may present are listed. Onset may be spontaneous or follow trauma. The physical signs and tests that lead to a clear diagnosis are described. The author's adaptation of plethysmography as a helpful diagnostic aid is illustrated. A new surgical approach to first rib resection through the axilla is described, and results of this operation in 60 cases are tabulated. Of the 50 patients in the neurological group, all were relieved by the operation, but three of the ten in the vascular group failed to benefit.

6. Considerations in the Management of Acute Traumatic Hemothorax

ARTHUR C. BEALL, JR., H. WAYNE CRAWFORD*, and
MICHAEL E. DEBAKEY, Houston, Texas

At the 1965 Meeting of the Association moderate controversy arose in regard to management of acute traumatic hemothorax, both associated and unassociated with heart wounds. Some of these comments led to re-evaluation of methods employed for care of such patients in our own institutions. Review of experience with more than 650 patients with acute traumatic hemothorax admitted over the past 10 years forces us to disagree with some of the statements made at last year's meeting. Heart wounds still are treated primarily by pericardiocentesis, reserving cardiorrhaphy for patients who do not respond to pericardial aspiration or who again develop tamponade following aspiration. Although thoracentesis may be used for minor degrees of hemothorax, most patients with acute traumatic hemothorax are managed primarily by intercostal thoracostomy tube drainage, depending upon rapid pulmonary re-expansion to prevent empyema rather than fearing contamination by the tube. Occasionally, when satisfactory evacuation of hemothorax cannot be accomplished in this way, early thoracotomy with removal of clotted blood has prevented formal decortication in almost all instances. Emergency thoracotomy, as in patients with heart wounds, is reserved for specific indications. Results supporting these concepts will be presented and indications for both emergency and delayed thoracotomy will be discussed.

7. Thoracic Repercussions of Amoebiasis

RODOLFO HERRERA, Guatemala City, Guatemala

Intestinal infestation with Entamoeba histolytica is frequently complicated by hepatic involvement. Hepatic amoebiasis, in its turn, is sometimes complicated by neighboring extension. This extension below and above either diaphragm creates what we have grouped as the thoracic repercussions of amoebiasis. Behavior of Entamoeba histolytica probably varies with the endemic zone in which it is present. In Guatemala, amoebiasis is not only very frequent (20% to 30% incidence in some hospitals), but it is also especially prone to be associated with thoracic complications. These can be divided in five groups: 1) non specific inflammatory changes of the pleura, 2) empyema (perforation of hepatic abscess into the pleural cavity), 3) pulmonary inflammatory changes ("amoebic pneumonitis"), 4) amoebic lung abscess (perforation of hepatic abscess into lung parenchyma), 5) pericardial, splenic, and other less frequent complications. Examples of these complications, the symptomsic evidence for the diagnosis, the therapeutic management, and the results obtained, will be presented.

*By Invitation

Monday Afternoon, May 16, 1966

2:00 P.M. Scientific Session: REGULAR PROGRAM
Ballroom

8. Surgical Management of Hernia of the Foramen of Morgagni

THOMAS P. COMER*, and O. THERON CLAGETT, Rochester, Minn.

In a recent publication the commonly held concepts that foramen of Morgagni hernias occur through a defect in the anterior diaphragmatic attachments and that they have a peritoneal sac were challenged. Although the authors based their conclusions on a single cadaver dissection, their paper did stimulate a review of foramen of Morgagni hernias treated surgically at the Mayo Clinic. In a 32-year period from 1933 to 1965, 1750 patients with diaphragmatic
9. Penicillin Epilepsy. Studies on the Blood Brain Barrier During Cardiopulmonary Bypass

A. R. C. DOBELL, J. D. WYANT*, K. B. SEAMANS*, and P. GLOOR*,
Montreal, Quebec

Blood stream infection is a tragic complication of valve replacement. Prophylactic antibiotics have a definite place in preventing this complication. It became our habit to give large doses of penicillin intravenously during and following these operations. Two such patients operated upon on consecutive days were in status epilepticus at the conclusion of operation. Following the second operation, penicillin was suggested as a possible cause and it was stopped in both patients. The first patient succumbed shortly thereafter. The pathological changes in the brain were typical of status epilepticus and no other cerebral lesion was seen. The second patient recovered completely. A penicillin assay was done on the CSF of both patients. Animal experiments were designed to evaluate blood-brain barrier permeability to penicillin and its relationship to Cardiopulmonary bypass. Forty-six experiments have been performed to date and they indicate the following: 1) status epileptics may occur in dogs given massive intravenous penicillin and placed on Cardiopulmonary bypass, 2) similar doses of penicillin are innocuous without bypass, 3) neither acidpsis nor blood transfusion nor hemolysis will produce convulsions in penicillin-loaded dogs not placed on bypass. Current experiments are investigating fat embolism, hypotension and hypothermia as possible causes of the barrier permeability to penicillin.

10. Two Stage Surgical Treatment of Ventricular Septal Defect in Patients Requiring Operation During the First Year of Life: Results of Pulmonary Artery Banding and Subsequent Open-Heart Repair

GRADY L. HALLMAN, DENTON A. COOLEY, and ROBERT D. BLOODWELL*,
Houston, Texas

If ventricular septal defect produces intractable cardiac failure in infancy in spite of vigorous medical therapy, surgical treatment must be utilized to prevent a fatal outcome. Results of closure of ventricular septal defect using cardiopulmonary bypass in the newborn period were discouraging (41 percent mortality in 31 patients) and led to the adoption of pulmonary artery banding as the procedure of choice when operation became necessary in small infants. Since 1959, sixty-eight patients have undergone banding during the first year of life with a 15 percent mortality. Most of the infants who died had multiple other major cardiovascular anomalies. Relief of heart failure in survivors was frequently striking. Twelve patients have subsequently undergone open-heart surgery for closure of the ventricular septal defect and reconstruction of the pulmonary artery. There was only one death and this occurred in an 11 month old infant in whom total repair was done only 4 months after the first operation because of a poor response to banding. Survivors who have been catheterized have exhibited normal cardiac dynamics. This paper is concerned with indications and surgical techniques for banding and total repair and will present results including pre and postoperative catheterization data.

11. Early and Late Results of Operation for Ventricular Septal Defect

TIMOTHY B. CARTMILL*, DWIGHT C. MCGOON, JAMES W. DUSHANE*,
and JOHN W. KIRKLIN, Rochester, Minn.

Controversy exists concerning surgery for patients with 1) ventricular septal defects (v.s.d.) without pulmonary hypertension, 2) large defects with severe pulmonary hypertension. Relevant data are presented from 432 patients operated upon since January, 1960. Of 179 with large pulmonary blood flow but normal pulmonary pressure (Pp/Ps<0.45) there were no hospital deaths. 2.5% had residual shunts. Cardiothoracic ratio (C/T) decreased in 66%. Height and weight increased in 51 and 45% of children. Results indicate propriety of operative treatment. 72 of 168 patients with severe pulmonary hypertension (Pp/Ps>0.75) and 87 with Rp/Rs of <0.45 and the 77 with RpRs of 0.45 - 0.75 had hospital mortality of 13% and 10% respectively. Residual shunt was detected in 12% and 15%. In the two groups together, C/T decreased in 79%; height and weight increased in 80% and 77%; late studies indicate that the Rp/Rs decreased in 62%. Operative results in infants over 6 months of age were similar to older patients. Hospital mortality was 54% in 19 patients with Rp/Rs<0.75. However, a late fall in Rp/Rs to 0.50 was demonstrated in 2 of the 4 cases studied, suggesting that severely elevated pulmonary vascular resistance is not invariably a contraindication to operation.
12. Factors Modifying Hemodynamic Results in Total Correction of Tetralogy of Fallot

In 1960 a program was instituted based upon the concept that complete surgical correction of tetralogy of Fallot was feasible and well tolerated by patients. One hundred cyanotic patients underwent total correction with seven post-operative deaths. Hemodynamic studies were performed pre-operatively in all patients with documentation of site and severity of outflow obstruction, right ventricular pressure of systemic level and arterial desaturation. Complications due to left ventricular failure or impaired pulmonary vascular bed were not encountered. There was no correlation between operative results and intensity of cyanosis, hematocrit level, severity of pre-operative symptoms and previous palliative procedures. All living patients are clinically improved. Post-operative catheterization demonstrated 52/60 had good to excellent hemodynamic results. A normal response to exercise was noted as measured by cardiac index, even in the presence of pulmonic valve insufficiency. Residual outflow tract gradients increased with exercise. The anatomy of right ventricle and pulmonary artery limited total correction in some cases - anomalous right coronary artery (4%), peripheral pulmonary artery stenosis (2%), fibrotic pulmonary annulus requiring an outflow patch (10%), end to end Blalock anastomosis (2 cases). The hemodynamic implications of these anatomic problems will be discussed. Survival and the late hemodynamic results were related to the ability to achieve total correction in the operating room.

13. The Ventriculomyotomy Operation for Muscular Subaortic Stenosis: A Reappraisal

W. G. BIGELOW, A. S. TRIMBLE*, and E. D. WIGLE*, Toronto, Ontario

Despite its simplicity, the Ventriculomyotomy procedure for the relief of outflow obstruction and decreased compliance of the left ventricle in ventricular septal hypertrophy has not received wide general acceptance and more extensive resection procedures have been described. Recent experimental and haemodynamic studies suggest that these hypertrophic hearts may vary pathologically as well as in their functional derangement. These features may mean that one surgical procedure may not be effective in all forms of this condition. From a group of fifty-five patients with muscular subaortic stenosis, seventeen have been operated upon over the past four years at the Toronto General Hospital. There were two hospital deaths. Postoperative catheterization in eight patients confirms elimination of the systolic gradient at rest, and following digitalization or isoproterenol infusion. The complete follow-up study will be reported for all fifteen survivors. Preoperative catheter and angiographic studies will be correlated with: a) pathology at operation, b) postoperative catheter and angiographic results, and c) clinical assessment. The results from this simple muscle splitting operation may clarify the nature of the functional derangements in this currently controversial type of heart muscle disease and aid in the selection of patients for surgery.

14. Results of the Creation of an Atrial Septal Defect (Blalock-Hanlon Operation) in 90 Patients with Transposition of the Great Vessels

WILLIAM P. CORNELL*, Pittsburgh, Pa., ROBERT E. MAXWELL*, J. ALEX HALLER, JR., Baltimore, Md., and DAVID C. SABISTON, JR., Durham, N.C.

The Blalock-Hanlon procedure for creation of an atrial septal defect was performed in 90 patients with transposition of the great vessels between 1948 and 1964. Half of these patients were less than one year old at the time of the operation and one-third were in the first three months of life. Severe anoxemia and congestive heart failure were the primary factors which prompted surgical intervention. Forty per cent of the patients in the entire series survived the operative procedure, with the highest mortality occurring in infancy. The mechanisms involved in the death of these patients have been reviewed, and the associated cardiac defects and their relationship to the ultimate result have been evaluated and will be discussed. Clinical improvement of the survivors was definite as evidenced by the arterial oxygen saturation which increased an average of 24% in the survivors. Of particular interest are sixteen patients who have survived ten years or longer and who are now doing well. In the entire series there were only five late deaths. With open correction now available for this malformation, it becomes increasingly important to perform a palliative procedure in order that these patients may survive to an age when the definitive operation can be safely performed.

*By Invitation
Tuesday Morning, May 17, 1966

8:30 A.M. Scientific Session
THORACIC SURGERY FORUM
Ballroom

15. An Investigation of Induced Chronic Hyperthermia and In Vivo Heat Dissipation

Since development of an implantable energy source (for powering a total cardiac prosthesis) is an essential part of artificial heart research, the mechanism to achieve excess heat dissipation assumes importance. Regardless of the energy converter used, it is unlikely that a conversion efficiency greater than 10% can be attained. Studies indicate that a blood pump (for man) requires 2 to 5 watts of pumping power; therefore, 20 to 50 watts of thermal power must be continually rejected from the body. In this study, the circulating blood was selected as the heat transfer medium. Stainless steel tubes, with thermally insulated electrical heaters on their outer surfaces and a coating of graphite-benzalkonium-heparin on their inner surfaces, were implanted in the aortas of dogs. The heaters were energized to power levels ranging from 8 to 40 watts (continuously) for intervals up to six months. Serial determinations were made of rectal, esophageal and blood temperature, plasma hemoglobin, blood viscosity, red cell fragilities, plasma protein profile, and thyroid, hepatic, renal, and cardiovascular function. Analysis of these data indicate that heat (40 watts) generated by a power source can be dissipated with only a small (1°C) increase in core temperature.

16. An Evaluation of the Protective Effect of Hyperbaric Oxygenation on the Central Nervous System During Circulatory Arrest
GORDON F. MOOR*, ROBERT FUSON*, GEORGE MARGOLIS*, IVAN W. BROWN, JR., and WIRT W. SMITH*, Durham, N.C.

One of the hopes of hyperbaric oxygenation has been the theoretical possibility of increasing the blood and tissue stores of physically dissolved oxygen to permit a significantly longer period of circulatory arrest without damage to the central nervous system. Using dogs and employing a critical neuropathologic study of the central nervous system as the determining end point, 179 separate experiments have been done. These have considered not only hyperbaric oxygenation, but the additional influence of hypothermia and added CO₂. Methods: Periods of total circulatory arrest of 5, 10 and 15 minutes at one (normal) and 3 atm. abs. were studied in normothermic and in modest hyperthermic (28-30°C) animals using 100% oxygen or a mixture of oxygen and CO₂. EKG and arterial pressures were monitored and blood gas values and pH were determined at the ambient pressures of the experiments. The animals were allowed to recover and autopsy carried out 5-7 days later. Special emphasis was placed upon a detailed study of the CNS by neuropathologist. The clinical and neuropathologic findings will be discussed. Our results are not in agreement with previously published reports but are consistent with theoretical calculations based upon the increased levels of blood oxygen content.

17. An Anatomical Study of the Peripheral Pulmonary Lymphatics
TIMOTHY C. PENNELL*, Winston-Salem, N.C
Sponsored by H. H. BRADSHAW

An anatomical study of the peripheral pulmonary lymphatic system of human lungs is presented. Post-mortem expanded fixation of human lungs was accomplished with formalin vapor and the peripheral pulmonary lymphatic channels were injected with radiographic contrast media. The details of this technique are discussed. Gross, microscopic and radiographic studies, including cine fluroscopy was carried out. As illustrated, these studies revealed the following: 1) Numerous lymphatic valves exist throughout the lungs. These valves display a fairly constant anatomical relationship, but allow an extremely variable direction of flow in the peripheral lymphatics. 2) The direction of flow in the interlobar septum, contrary to previous publications, is towards the hilum. 3) Numerous Anastomotic sites exist between the perivascular and peribranchial channels in the system, apparently without a consistent anatomical relationship. 4) On the basis of present studies no definite segmental relationship of the peripheral lymphatic channels can be established or delineated. These findings are contrary to previous published information concerning the subject, and these differences will be discussed.

The functional changes following homotransplantation of pulmonary tissue are a diminution of ventilation and CO₂ release in the presence of a normal oxygen uptake. The chief technical problem encountered in lung transplantation has been a high incidence of vascular thrombosis. The effects of Dibenzyline upon these physiologic changes and upon the incidence of vascular thrombosis were evaluated. Reimplantation of the left lower lobe of the lung was performed in 44 dogs. Thirty-one animals served as controls. Of this group seventeen developed vascular thrombosis. Thirteen animals were pre-treated with Dibenzyline. There was no instance of vascular thrombosis. The pulmonary blood flow, vascular resistance, gas exchange and diffusion capacity were unchanged in the five long-term survivors. Those animals which died had an increased pulmonary vascular resistance. Homotransplantation of the left lower lobe was performed in thirty-one animals. They received 4.0 mg/kg. Imuran daily. Twenty-one animals were controls. Sixteen of these animals, or 76%, died of vascular thrombosis. Three animals, 14%, were long-term survivors. Ten animals received Dibenzyline. Two, or 20%, were
long-term survivors. Of the remaining eight animals, venous thrombosis occurred in only one animal. The long-term survivors showed a normal CO2 uptake, but a decreased CO2 release and diffusion capacity.

19. pH and Respiratory Work

RICHARD M. PETERS, and E. McG. HEDGEPETH, JR., Chapel Hill, N.C.

Metabolic acidosis and respiratory acidosis are common complications of major cardiac and pulmonary surgery. Fall in blood pH is a stimulus for increased ventilation. Respiratory acidosis while indicative of respiratory insufficiency may be associated with increased ventilation in a subject with mechanical derangements of the lung. It has been shown that inhalation of CO2 mixtures which lower pH increase airway resistance. To clarify whether changes in pH independent of change in pCO2 alter respiratory mechanics, a series of ten dogs were ventilated at a constant rate and volume while metabolic acidosis was induced by infusion of HCl and respiratory acidosis by CO2 inhalation. Changes in measured compliance resistance, elastic and resistive work were compared by multivariant analysis with the induced changes in pH, pCO2 and [HCO3-]. Elastic properties were not significantly altered. Fall in pH led to a progressive rise in resistance and resistive work. Significant increases in airway resistance shown by these experiments leads to alterations in time constants of various lung units. This further adds to respiratory work and pH depression by disturbing coordination of ventilation and perfusion. These experiments further emphasize the importance of restoring pH to normal.

20. Electrophrenic Respiration by Radiofrequency Induction

DANIEL W. VAN HEECKEREN*, and WILLIAM W. L. GLENN, New Haven, Conn.

Electrical stimulation of the phrenic nerve (electrophrenic respiration - EPR) will effectively control ventilation. EPR by radiofrequency (RF) induction as developed in this laboratory would appear to have several advantages over other techniques. To simulate normal diaphragmatic respiratory movement the wave-form envelope generated in the externally located RF transmitter may be varied in contour, amplitude or frequency by modulation of the carrier wave. The internally placed receiver unit delivers mono-phase or bi-phase impulses to the phrenic nerve by electrodes applied directly to the nerve or indirectly through the cava or pulmonary artery. RF-EPR has been carried out in animals for up to two years. Stimulation thresholds remained stable unless electrolysis occurred. Temporary paralysis of the ipsilateral diaphragm following chronic RF-EPR was observed. The suppression of spontaneous respiration by RF-EPR has been investigated. Tetanic unilateral phrenic nerve stimulation caused a period of apnea. This period was decreased slightly by ipsilateral EPR has been carried out in animals for up to two years. The means by which splinting protects the esophagus from caustic stricture, and the clinical applicability of the method will be discussed.

21. Tracheobronchial Reconstruction with Autologous Periosteum

ERIC W. FONKALSrud*, and WILLIAM G. PLESTED*, Los Angeles, Calif. Sponsored by DONALD G. MULDER

Tracheal reconstruction with prosthetic materials or tissue grafts has generally been unsuccessful. The present study was undertaken to evaluate autologous costal periosteum as a pedicle flap or free graft for tracheal reconstruction. Both immediate and delayed rigid periosteal grafts were studied. Five groups of dogs were studied: 1) Costal periosteum was transplanted as a free graft to a defect in the cervical trachea. 2) Costal periosteum was placed over a large defect in the thoracic trachea as a pedicle flap. 3) A staged rib resection was performed with construction of a pedicle tube of periosteum over a solid plastic rod. Two and one-half weeks later a free circumferential graft of rigid periosteum was used to reconstruct a defect in the cervical trachea. 4) A staged rib resection was performed with molding of the periosteum into a sheet. At the second operation a free graft of rigid periosteum was placed over a large defect in the cervical trachea. 5) A staged periosteal flap was used to reconstruct a defect in the thoracic trachea. These studies indicated that autologous periosteum may serve as a suitable tissue for tracheobronchial reconstruction. Delayed rigid periosteal grafts function better than soft grafts transplanted immediately. Free periosteal grafts appear to take almost as well as pedicle flaps.

22. The Effect of Intraluminal Splinting in Preventing Caustic Stricture of the Esophagus

STANLEY C. FELL*, AUGUST DENIZE*, NORWIN BECKER*, and ELLIOTT S. HURWITT, New York, N.Y.

Despite the administration of steroids and antibiotics, there is a significant incidence of esophageal stricture following the ingestion of caustics. The effect of intraluminal esophageal splinting was studied in cats, using the method of Haller and Bachman to produce lye stricture. Antibiotics but no steroids were administered. Surviving control animals all developed esophageal stenosis, confirming the reliability of the method. In 20 cats the effect of an endoesophageal polyvinyl prosthesis implanted in the normal esophagus was studied. Thirteen animals survived between 15 and 40 days. Postmortem examination revealed aspiration pneumonia in all, with varying degrees of esophagitis. In the experimental group esophageal splinting was performed one hour after lye burning. In 10 cats the prosthesis was removed in less than 15 days; 7 developed esophageal stricture within 3 weeks, following removal of the splint. In 20 cats intraluminal esophageal splinting was maintained from 15 to 40 days. Esophageal stricture did not occur, nor has it developed in surviving animals followed thus far for 6 months. The means by which splinting protects the esophagus from caustic stricture, and the clinical applicability of the method will be discussed.
23. Experimental Esophageal Stenosis and Its Treatment

MASARU TSUKAMOTO*, FLOYD H. LIPPA*, and ALAN P. THAL, Detroit, Mich.

The purpose of this experiment was to produce a model of esophageal stricture in dogs and to investigate the value of a gastric fundic patch in its correction. Thirty mongrel dogs were used. In one group of 15 dogs, 10% phenol was injected submucosally all around the esophagus above the esophagogastric junction, and then a skin graft was placed over the area of injection. In the other group of 15 dogs, a piece of fascia was put submucosally around the esophagus above the cardiac junction. Care was taken to prevent the stenosis of esophagus by fascia itself. Three weeks later, all the dogs in both groups had lost weight, and x-rays and esophagoscopcy showed severe stenosis of the distal esophagus and dilatation of the proximal esophagus. These dogs were operated upon again and the esophagus was incised longitudinally through the stenosed area and triangulated. A generous portion of gastric fundus was sutured over this area after biopsies were taken. The triangular defect in the esophagus protected by the overlying fundus was completely epithelialized four weeks after operation. The dogs gained weight, and x-rays and esophagoscopcy demonstrated no reflux or stenosis of the esophagus.

24. Hemodilution in Extracorporeal Circulation: Large or Small Non-Blood Prime?

ANATOLIO B. CRUZ, JR.*, and J. C. CALLAOHAN, Edmonton, Alberta

Non-blood solutions, unmixed or in combination with homologous blood, and other ingredients have been used in small and large prime systems, with the respective proponents achieving good results. Thirty mongrel dogs of both sexes, weighing from 12 to 37 kg., divided into three groups, were placed on complete cardiopulmonary bypass for sixty minutes at normothermia, using disposable plastic bag oxygenators. The priming volumes were: Group I - 20cc/kg, Group II - 40cc/kg, and Group III - 60cc/kg, of Ringers Solution. No Alkali, THAM, or other diluents were added to the perfusate. Blood gases, pH, bicarbonate, buffer base, base excess, hemoglobin, hematocrit, lactic and pyruvic acids, electrolytes, blood sugar and plasma hemoglobin were determined before, during, and after perfusion, including the 8 hour post-bypass period. Acid base balance and metabolic derangements were minimal in Group I, and became worse in Groups II and III, although flow rates in the latter groups were the same as, or slightly better than, those in Group I. Animals in Groups II and III bled more in the post-bypass period, and remained unconscious longer. Survival rates were: Group I--100%, Group II - 60%, and Group III - 40%.

25. Body Fluid Compartment Changes After Open Intracardiac Operations

JOHN CLELAND*, JAMES R. PLUTH*, W. NEWLON TAUXE*, and JOHN W. KIRKLIN, Rochester, Minn.

Our previous work demonstrated that increased blood volume (BV) and total body water (TBW) of patients with mitral stenosis returned to pre-dieted normal values two weeks after closed commissurotomy and extralaps-matic extracellurar fluid failed to do so. 30 patients subjected to open intracardiac operations have now been studied pre-operatively, immediately postoperatively and two to thirty-five days later. Plasma volume was reduced immediately postoperatively (mean - 8%). There was greater reduction of red cell mass (ROM) following mitral valve replacement (mean - 51%) than aortic valve replacement (mean - 21%) or repair of congenital malformations (mean - 15%). Blood volumes late postoperatively were reduced compared to pre-operatively and similar to those immediately postoperatively. This is probably a result of improved cardiac performance after operation. Extracellular fluid (ECF - 131Br) was increased immediately postoperatively (mean +13%) but especially in patients with recent congestive failure (mean +27%). Late postoperatively ECF in most patients returned to pre-operative values but were still above predicted normal. Abnormalities of renal function may be etiologic. TBW was unchanged immediately after surgery. Intracellular water appeared to be markedly decreased at that time.

26. The Importance of Micro-Embolism in the Pathogenesis of Organ Damage Caused by Prolonged Use of the Pump Oxygenator

There is considerable evidence that blood exposed to oxygen in an extra-corporeal circulation for prolonged periods accumulates large numbers of microscopic aggregates. These aggregates are removed during passage through the circulation, and are an important source of organ damage. We have attempted to define the nature and etiology of these aggregates, their effects during perfusion, and methods of eliminating them from extracorporeal circulation systems. Fresh, unmatched blood was circulated and oxygenated in a disc oxygenator, for ten hour periods. Partial cardiopulmonary bypass was then instituted in dogs, using veno-arterial, and veno-venous perfusion in different groups. The effect on renal, cerebral and cardiovascular function was evaluated by clinical and histological studies. Pulmonary function was studied with measurement of blood gases, and by post-mortem studies of surface tension of lung extracts, pressure-volume characteristics of excised lungs and routine and electron microscopic examination of lung sections. Screen filtration pressures were measured in the circulating blood, as an index of its content of embolic material. These studies indicate the importance of particulate obstruction of the micro-circulation during extracorporeal circulation, and relate to the clinical use of prolonged assisted circulation.

27. Must Heparin Be Neutralized Following Open Heart Operations?

ALDO R. CASTANEDA*, Minneapolis, Minn.
Sponsored by RICHARD L. VARCO

Systemically administered heparin during extracorporeal perfusion has commonly been neutralized at the conclusion of the operative procedure. However, either polybrene or protamine for heparin back titration are polybasic, and can produce
Wednesday Afternoon, May 18, 1966

2:00 P.M. Scientific Session: REGULAR PROGRAM Ballroom

44. Gastroesophageal Reflux and Hiatus Hernia: Complications and Therapy
HAROLD G. URSCHEL, and DONALD L. PAULSON, Dallas, Texas

Although gastroesophageal reflux has been associated with esophageal hiatal diaphragmatic hernia, its true significance has not been fully appreciated until recently. Of 1148 patients with esophageal hiatal hernia or gastroesophageal reflux without hernia, 15 percent were recognized as having respiratory symptoms prior to 1961 in contrast to 50 percent since that date. Symptoms include cough, hoarseness, bronchitis, asthma, and pneumonitis. Gastroesophageal reflux was documented with esophagoscopy and esophageal cine fluorography. Patients with gastroesophageal and pulmonary complications secondary to reflux with, or without, elevated gastric acids were managed by reconstruction of the gastroesophageal angle and hernia repair. In those with associated duodenal or gastric ulcers and elevated acids and pyloroplasty were added. Longitudinal stenoses were treated by dilatation, reconstruction of the gastroesophageal angle and hernia repair except where esophageal shortening necessitated colon interposition. Annular strictures were treated through a transthoracic gastroscopy by circumferential mucosal resection and anastomosis, gastroesophageal angle reconstruction and hernia repair. Comparison of 436 patients operated upon by modified Allison procedures with 227 patients undergoing "Belsey" operations indicates a 10 percent hernia recurrence, and a 25 percent persistence of gastroesophageal reflux in the former group, and 2 percent hernia recurrence and less than 10 percent reflux in the latter.

45. Surgical Management of Esophageal Reflux and Hiatus Hernia: Long Term Results with 1030 Patients
DAVID B. SKINNER*, Boston, Mass., and RONALD BELSEY*, Bristol, England

Sponsored by PAUL S. RUSSELL

One thousand and thirty patients, including 119 children, required surgical treatment for esophageal reflux and hiatus hernia at the Thoracic Surgery Unit, Bristol, England, between 1949 and 1962. Symptoms, esophagoscopy and radiographic findings, indications for surgery, operative management, and results have been reviewed. Long term follow-up has been obtained in 97%. Post-operative barium swallows were obtained in all patients, and have been repeated during follow-up in 57%. In this series, the standard hiatus hernia repair has been a technique developed at Frenchay Hospital, which creates a segment of intra-abdominal esophagus held in place by an exaggerated esophageal angle. This technique will be described. Studies of the motor function and pH gradient of the cardia before and after hiatus hernia repair support the physiological effectiveness of this method. Low mortality, complication and long term recurrence rates have been encouraging. Factors contributing to recurrences have been identified. When hiatus hernia repair has not been possible, other techniques such as left colon interposition or esophagogastrectomy have been employed. A review of this experience suggests an overall approach to the management of esophageal reflux and hiatus hernia.

46. Functional Evaluation of Childhood Esophageal Replacement
H. BIEMANN OTHERSEN, JR.*, Charleston, S.C., and H. WILLIAM CLATWORTHY, JR., Columbus, Ohio

In children, which technique of total esophageal replacement functions best? At present, the colon appears to be the substitute of choice. However, other questions must be answered. Should the interposed colon be: Right, transverse, or left colon? Iso- or anti-peristaltic? Retrosternal or intra-pleural? In order to answer these questions concerning technique and to evaluate mechanical function of the transplant and its effects on somatic growth, this study was undertaken. From 1960 to 1965 a total of eleven children have had total esophageal replacement for atresia or caustic stricture at the Children's Hospital, Columbus, Ohio. All patients were evaluated clinically and with detailed cinefluoroscopy. Evidence will be presented for the following conclusions: 1) A single stage colonic interposition is preferable. 2) The interposition operation should be delayed until the child is ambulatory and has been taught to chew and eat. 3) There is no discernable difference in function between right and left colonic segments and between anti- and iso-peristaltic arrangements. Small bowel
segments do retain peristalsis, but of a segmenting rather than propulsive type. 4) The interposed colon acts not as an esophageal substitute but as a conduit only. Gravity, not peristalsis, governs the flow of ingested material.

47. Post-Operative Changes in Regional Pulmonary Blood Flow

Lung scintiscans with macroaggregated radioalbumin were performed in 80 patients on the 1st or 2nd, and the 7th day following thoracic (25 cases) and abdominal (55 cases) operations to detect pulmonary emboli and changes in distribution of pulmonary blood flow. Chest roentgenograms, arterial blood gas studies and pulmonary arteriograms were made at the same time. The initial scintiscan was abnormal in 45 patients (56%) but returned to normal by the 7th post-operative day in 32. The principal changes were: 1) wedge-shaped defects, simulating emboli; 2) absence of blood flow in the lung periphery, and, 3) decreased blood flow to the lung bases. These changes were usually associated with a normal roentgenogram but with mild decreases in pO_2 (50-63 mm.Hg) and oxygen saturation (86 -92%). The pulmonary arteriograms demonstrated small emboli in only 2 patients, but clinical evidence of atelectasis or pneumonia occurred in 12 patients with abnormal scintiscans and in only 2 patients with normal regional blood flow. The frequency of unsuspected transient changes in regional pulmonary blood flow limits the diagnosis of pulmonary emboli by scintiscanning alone, and suggests that post-operative atelectasis may be preceded by changes in regional blood flow.

48. Pulmonary Embolectomy. Eighteen Months' Experience at Brompton Hospital

M. PANETH**, London, England
Sponsored by JOHN W. KIRKLIN

An account will be given of emergency pulmonary embolectomy with cardio-pulmonary bypass. The clinical material has been gathered from a number of hospitals in and around London and consists of more than 12 cases. The factors affecting a successful outcome will be analysed. The importance of the history, physical signs and of simple investigations will be pin-pointed leading to an accurate clinical diagnosis. Physiological data will be presented, both experimental and clinical, relating to pulmonary embolism with particular reference to its effect on the function of the right ventricle. Late results of untreated massive pulmonary embolism with survival will be shown and a surgical approach to these cases will be indicated.

49. Coronary Artery: Bight Heart Fistulas

RODMAN E. TABER, HENRY H. GALE*, and CONRAD R. LAM, Detroit, Mich.

Congenital fistulas between a coronary artery and the right side of the heart may present physical findings which are difficult to differentiate from those of patent ductus, aorto-ventricular fistula or aortic insufficiency. Right-sided cardiac catheterization will establish the presence of a left-to-right shunt in these patients, but coronary arteriography must be relied upon to identify the exact site of the fistula and permit closure with minimal disturbance of the normal coronary circulation. Four patients successfully underwent closure of fistulas between the right coronary artery and right side of the heart. The shunt was between the sinus node branch of the right coronary artery and the right atrium in three patients. An anterior branch of the right coronary artery and the right ventricle were involved in the fourth patient. The fistulas were divided in three patients and over-sewn in one. Although electrocardiographic signs of myocardial ischemia were not uncommon in the immediate postoperative period, all four have recovered and are free of cardiac murmurs.

50. Direct Coronary Artery Surgery with Endarterotomy and Patch Craft Reconstruction: Clinical Application and Technical Considerations

DONALD B. EFFLER, LAURENCE K. GROVES, ERNESTO SUAREZ*, and RENE G. FAVALORO*, Cleveland, Ohio

Between January 1962 and December 15, 1965, 51 operations were performed in the Cleveland Clinic Hospital for direct relief of coronary artery obstruction. Eleven deaths occurred at or immediately after operation; each death is attributable to induced myocardial infarction and represents surgical failure. Nine of the 11 deaths occurred in the 17 operations on the left coronary artery. Indications for the direct approach are greater than anticipated. Our initial experience includes endarterectomy

*By Invitation
†Evarts A. Graham Memorial Traveling Fellow, 1956-57

The American Association for Thoracic Surgery, 1965-66

Honorary Members

ALLISON, PHILIP.. Radcliffe Infirmary, Oxford, England
BARRETT, NORMAN R.. St. Thomas' Hospital, London, S. E. 1, England
BOEREMA, I..... Surgical Clinic, University of Amsterdam, Netherlands
BROCK, RUSSELL C.Guy's Hospital, London, England
BROM, A. GERARD.......... University Hospital, Leiden, Holland
CRAFOORD, CLARENCE........ Sabbatsberg Sjukhus, Stockholm, Sweden
D'ABREU, A. L.. Queen Elizabeth Hospital, Edgbaston, Birmingham, England
DENK, WOLFGANG................ Surgical University Clinic, Vienna, Austria
LOGAN, ANDREW. Royal Infirmary, Edinburgh 3, Scotland
MASON, GEORGE A........ 9 Kensington Terrace, Newcastle-Upon-Tyne 2, England
SEMB, CARL Ullevaal Hospital, Oslo, Norway
SHENSTONE, NORMAN S.
904 Medical Arts Bldg., Toronto 5, Ontario, Canada
THOMAS, CLEMENT PRICE........ 69 Harley St., London, W. 1., England

Active Members

ABBOTT, OSLEREmory University Clinic, Atlanta, Ga. 30322
ADKINS, PAUL C........ 901 23rd St., N.W., Washington, D. C. 20037
ABLER, RICHARD H.100 High St., Buffalo, N. Y. 14203
ALLBRITTEN, FRANK F., JR........ University of Kansas Medical Center, Kansas City, Kan. 66103
ALLEY, RALPH D.......... Albany Hospital, Albany, N. Y. 12208
ANDERSEN, MURRAY N.. 462 Grider St., Buffalo, N. Y. 14215
ANDREWS, NEIL C.466 West Tenth Ave., Columbus, Ohio 43210
ANKENNEY, JAY L.. 2065 Adelbert Rd., Cleveland, Ohio 44106
ARONSTAM, ELMORE M. Letterman General Hospital, San Francisco, Calif. 94129
ASHBURN, FRANK S.... 1835 Eye St., N.W., Washington, D. C. 20006
AUERBACH, OSCAR Veterans Administration Hospital, East Orange, N. J. 07019
BAFFES, THOMAS G......... Children's Memorial Hospital, Chicago, Ill. 60614
BAHNSON, HENRY T........ Presbyterian-University Hospital, Pittsburgh, Pa. 15213
BAILEY, CHARLES P.. 3rd Ave. and 183rd St., New York, N. Y. 10057
BARONOFSKY, IVAN D........ 7910 Frost St., San Diego, Calif. 92123
BARTHEL, RAYMOND J.18280 Fairfield St., Detroit, Mich. 48221
BATTERSBY, JAMES S..... 1040 W. Michigan St., Indianapolis, Ind. 46202
BEALL, ARTHUR C., JR........ 1200 M. D. Anderson Blvd., Houston, Texas 77025
BEATTIE, EDWARD J., JR................ 1753 W. Congress Parkway, Chicago, Ill. 60612
BELL, JOHN W............. Veterans Administration Hospital, Seattle, Wash. 98108
BENOIT, HECTOR W., JR.503 Plaza Parkway Bldg., Kansas City, Mo. 64112
BERG, RALPH, JR.... 231 Medical Center Bldg., Spokane, Wash. 99204
BERGMANN, MARTIN4409 W. Pine St., St. Louis, Mo. 63108
BERNATZ, PHILIP E... Mayo Clinic, Rochester, Minn. 55902
BERNHARD, WILLIAM F... 300 Longwood Ave., Boston, Mass. 02115
BIGELOW, WILFRED G. 709 Medical Arts Bldg., Toronto, Ontario, Canada
BLACK, HARRISON... 319 Longwood Ave., Boston, Mass. 02115
BLADES, BRIAN......... 901 23rd St., N.W., Washington, D. C. 20037
BLAKEMORE, WILLIAM S.19th and Lombard St., Philadelphia, Pa. 19146
BLOOMBERG, ALLEN E.... 1095 Park Ave., New York, N. Y. 10028
BLOOMER, WILLIAM E.... Harbor General Hospital, Torrance, Calif. 90507
BOSHER, LEWIS H... 1200 E. Broad St., Richmond, Va. 23219
BOUGAS, JAMES A...... 750 Harrison Ave., Boston, Mass. 02118
BOYD, DAVID P...................... 605 Commonwealth Ave., Boston, Mass. 02215
BOYD, THOMAS F...................... 745 Massachusetts Ave., Boston, Mass. 02118
BREWER, LYMANN A., III 658 South Bonnie Brae St., Los Angeles, Calif. 90057
BRINDLEY, G. VALTER, JR.. Scott and White Clinic, Temple, Texas 76501
BROOKS, JAMES W... 1200 E. Broad St., Richmond, Va. 23219
BROWN, IVAN W., JR........ Duke University Hospital, Durham, N. C. 27706
BROWN, ROBERT K.. 1624 Gilpin St., Denver, Colo. 80218
BROWN RIGG, GARRETT M.. 47 Queens Rd., St. Johns, Newfoundland, Canada
BRUNEAU, JACQUES 3875 St. Urbain, Suite 307, Montreal 18, Quebec, Canada
BUGDEN, WALTER F. 1200 East Genesee St., Syracuse, N. Y. 13210
BURFORD, THOMAS H... Barnes Hospital Plaza, St. Louis, Mo. 63110
BYRON, FRANCIS X. 1527 East California Blvd., Pasadena, Calif. 91106
CALLAGHAN, JOHN C........ Suite 550, 8409 112 St., Edmonton, Alberta, Canada
CAMISHION, RUDOLPH C 1025 Walnut St., Philadelphia, Pa. 19107
CAMPBELL, GILBERT 1200 M.D. Anderson Blvd, Houston, Texas 77025
CARNELSON, ROBERT I......... Stanford Hospital, Palo Alto, Calif. 94302
CARTER, MAX G. 670 George St., New Haven, Conn. 06511
CHAMBERLAIN, J. MAXWELL. 23 East 79th St., New York, N. Y. 10021
CHAMBERS, JOHN S., JR. 2850 Sixth Ave., San Diego, Calif. 92103
CHESNEY, JOHN G 1550 N.W. 10th Ave., Miami, Fl. 33136
CLATWORTHY, H. WILLIAM, JR... 695 Bryden Rd., Columbus, Ohio 43205
CLOWES, GEORGE H. A., JR.. 818 Harrison Ave., Boston, Mass. 02118
COHN, ROY B................ Stanford Hospital, Palo Alto, Calif. 94302
COLEMAN, FRANK P.... 1111 W. Franklin St., Richmond, Va. 23220
COLLINS, HAROLD A......... Vanderbilt University Hospital, Nashville, Tenn. 37203
CONDON, WILLIAM B. 1850 Gilpin St., Denver, Colo. 80218
CONKLIN, WILLIAM S. 511 Southwest Tent Ave., Portland, Ore. 97205
CONNOLLY, JOHN E.Stanford Medical Center, Palo Alto, Calif. 94306
COOLEY, DENTON A. 1200 M.D. Anderson Blvd, Houston, Texas 77025
CORDELL, A. ROBERT Bowman Gray School of Medicine, Winston-Salem, N. C. 27103
COTTON, BERT H... 111 Congress St., Pasadena, Calif. 91105
COWLEY, R. ADAMS........... University Hospital, Baltimore, Md. 21201
CRANDELL, WALTER B..... Veterans Adm. Hospital, White River Junction, Vt. 05001
CRAWFORD, E. STANLEY... 1200 Moursund Avenue, Houston, Texas 77025
CREECH, OSCAR, JR.Tulane University School of Medicine, New Orleans, La. 70112
CROSS, FREDERICK S........ 11311 Shaker Blvd., Cleveland, Ohio 44104
CURRERI, ANTHONY R... 1300 University Ave., Madison, Wis. 53705
CUTLER, PRESTON R. 535 East 1st South St., Salt Lake City, Utah 84102
DAILEY, JAMES E........... St. Joseph Hospital, Houston, Texas 77002
DAMANN, JOHN F.Barrsden Stony Point Rd., Charlottesville, Va. 22901
DANIEL, ROLLIN A.... 410 Medical Arts Bldg., Nashville, Tenn. 37212
DANIELS, ALBERT C.... 100 South St., Sausalito, Calif. 94965
DAUGHTRY, DEWITT C.. 1550 N.W. 10th Ave., Miami, Fl. 33136
DAVILA, JULIO C........ 3401 North Broad St., Philadelphia, Pa. 19140
DAVIS, MILTON V...... 3707 Gaston Ave., Dallas, Texas 75246
DAY, J. CLAUDE............. 307 David Whitney Bldg., Detroit, Mich. 48226
DEATON, W. RALPH, JR.. 1027 Professional Village, Greensboro, N. C. 27401
DB BAKEY, MICHAEL E. 1200 Moursund Ave., Houston, Texas 77025
DECAMP, PAUL T.. 1514 Jefferson Highway, New Orleans, La. 70121
DELARUE, NORMAN C... 25 Donlea Drive, Toronto 17, Ontario, Canada
DENNIS, CLARENCE... 989 Edgewood Ave., Pelham Manor, N. Y. 10802
DERRICK, JOHN R. ... University of Texas Medical Branch, Galveston, Texas 77551

DESFORGES, GERARD....... 452 Pleasant St., Maiden, Mass. 02148

DETERLING, RALPH A., JR......... 171 Harrison Ave., Boston, Mass. 02111

DEWALL, RICHARD A.1041 Jackson Ave., River Forest, Ill. 60305

DFVELEY, WALTER L... 121 Twenty-First Ave., North, Nashville, Tenn. 37203

DOBELL, ANTHONY R. C...... Royal Victoria Hospital, Montreal 2, Quebec, Canada

DOMM, SHELTON E.1918 W. Clinch Ave., Knoxville, Tenn. 37916

DORNER, RALPH A...... 710 Equitable Bldg., Des Moines, Iowa 50309

DRAKE, EMERSON H.. 18 Bramhall St., Portland, Me. 04102

DUGAN, DAVID J...... 459 30th St., Oakland, Calif. 94609

EDWARDS, W. STELLING619 S. 19th St., Birmingham, Ala. 35209

EFFLER, DONALD B.. Euclid and East 93rd St., Cleveland, Ohio 44106

EHRENHAFT, JOHANN L........ University Hospitals, Iowa City, Iowa 52240

EISEMAN, BEN....... University of Kentucky Medical Center, Lexington, Ky. 40506

ELLIS, F. HENRY, JR. Mayo Clinic, Rochester, Minn. 55902

ELLISON, ROBERT G.. Mayo Clinic, Rochester, Minn. 55902

EMERSON, GEORGE L....... 11 Rochester St., Scottsville, N. Y. 14546

EVANS, BYRON H......... 2930 North Fresno St., Fresno, Calif. 93703

FALOR, WILLIAM H.208 Medical Arts Bldg., Akron, Ohio 44304

FERGUSON, THOMAS B... Barnes Hospital Plaza, St. Louis, Mo. 63110

FINDLAY, CHARLES W., JR......... 180 Fort Washington Ave., New York, N. Y. 10032

FINEBERG, CHARLES. 255 South 17th St., Philadelphia, Pa. 19103

FISCHER, WALTER W.170 East 78th St., New York, N. Y. 10021

FITZPATRICK, HUGH F......... St. Luke's Hospital, New York, N. Y. 10025

FORD, JOSEPH M........... 1056 Fifth Ave., New York, N. Y. 10028

FORD, WILLIAM B...... 220 Meyran Ave., Pittsburgh, Pa. 15213

Fox, ROBERT T.2136 Robin Crest Lane, Glenview, Ill. 60025

FRANK, HOWARD A.330 Brookline Ave., Boston, Mass. 02215

FRENCH, SANFORD W., III... 307 East Buena Vista, Barstow, Calif. 92311

GAENSLER, EDWARD A.229 Dudley Rd., Newton Center Mass. 02159

GAGNON, EDOUARD D.902 Est. Rue Sherbrooke, Montreal, Quebec, Canada

GARAMELLA, JOSEPH J..... 1629 Medical Arts Bldg., Minneapolis, Minn. 55402

GEBAUER, PAUL.... Leahi Hospital, Honolulu, Hawaii 96816

GERBODE, FRANK........ Presbyterian Medical Center, San Francisco, Calif. 94115

GILBERT, JOSEPH W., JR.10507 Weymouth St., Bethesda, Md. 20014

GLENN, WILLIAM W. L.33 Cedar St., New Haven, Conn. 06519

GOLDMAN, ALFRED...... 9201 Sunset Blvd., Los Angeles, Calif. 90069

GORDON, JOSEPH......... 717 Encino Plaza, N.E., Albuquerque, N. Mex. 87101

GRAVEL, JOFFRE-ANDRE170 Grande-Allee West, Quebec 6, Canada

GREEK, ALLEN E.. 430 Northwest 12th St., Oklahoma City, Okla. 73103

GRIMES, ORVILLE F........ University of California Hospital, San Francisco, Calif. 94122

GROVES, LAURENCE K.Cleveland Clinic, Cleveland, Ohio 44106

GROW, JOHN B.3705 East Golf ax, Denver, Colo. 80206

GWATHMEY, OWEN...... 501 E. Franklin St., Richmond, Va. 23219

HALL, DAVID P.966 East Third St., Chattanooga, Tenn. 37403

HANLON, C. ROLLINS..... 1325 South Grand Blvd., St. Louis, Mo. 63104

HARDY, JAMES D...... University of Mississippi Medical Center, Jackson, Miss. 39216
HARKEN, DWIGHT E...... 67 Bay State Rd., Boston, Mass. 02215
HARRISON, ALBERT W.3155 Stagg Drive, Beaumont, Texas 77701
HARRISON, ROBERT W.1810 Wealthy St., S.E.,
Grand Rapids, Mich. 49605
HAUPT, GEORGE J.... 306 Lankenau Medical Bldg., Philadelphia, Pa. 19151
HEIMBECKER, RAYMOND O.. Toronto General Hospital, Toronto 2,
Ontario, Canada
HELMSWORTH, JAMES A........ Cincinnati General Hospital,
Cincinnati, Ohio 45229
HEROY, WILLIAM W...... East Gate Rd., Lloyd Harbor,
Huntington, N. Y. 11743
HEWLETT, THOMAS H.... Fresno County General Hospital,
Fresno, Calif. 93702
HIGGINSON, JOHN F........ 2320 Bath St., Santa Barbara, Calif. 93104
HILL, Lucius D.1118 Ninth Ave., Seattle, Wash. 98101
HOLINGER, PAUL H......... 700 North Michigan Ave., Chicago, Ill. 60611
HOLLAND, ROBERT H.. 3216 Beverly Drive, Dallas, Texas 75205
HOLMAN, CRANSTON W..... 862 Fifth Ave., New York, N. Y. 10021
HOLSWADE, GEORGE R..... 525 East 68th St., New York, N. Y. 10021
HOPKINS, WILLIAM A...... 1293 Peachtree St., N.E., Atlanta, Ga. 30309
HUDSON, THEODORE R... Suite 826, 251 E. Chicago Ave.,
Chicago, Ill. 60611
HUFNAGEL, CHARLES A.3800 Reservoir Rd., N.W.,
Washington, D. C. 20007
HURLEY, G. A. P....... 3869 Cote des Neiges Rd., Montreal 25, Quebec, Canada
HURWITZ, ALFRED...... 4300 Alton Rd., Miami Beach, Fla. 33120
JAHNKE, EDWARD J., JR......... Walter Reed General Hospital,
Washington, D. C. 20012
JANOMIS, ROBERT W.Palo Alto Clinic, Palo Alto, Calif. 94301
JARVIS, FRED J......... 819 Boylston Ave., Seattle, Wash. 98104
JENSIK, ROBERT J........... 224 South Michigan Ave., Chicago, Ill. 60604
OHNS, THOMAS N. P.6305 Towana Rd., Richmond, Va. 23226
OHNSON, ELGIE K.,..230 Hilton St., Hempstead, N. Y. 11550
OHNSON, FRANK E....... 829 Medical Arts Bldg., Minneapolis, Minn. 55402
OHNSON, JULIAN....... 3400 Spruce St., Philadelphia, Pa. 19104
OHNSTON, FRANK R...... Bowman Gray School of Medicine,
Winston-Salem, N. C. 27103
JOHNSTON, J. HARVEY, JR.710 North State St., Jackson, Miss. 39201
JOYNT, GEORGE H. C... 25 Leonardi Ave., Suite 102, Toronto 2b,
Ontario, Canada
JULIAN, ORMAND C... 25 East Washington St., Chicago, Ill. 60602
KARLSON, KARL E.......... 451 Clarkson Ave, Brooklyn, N. Y. 11203
KAUSEL, HARVEY W.Albany Hospital, Albany, N. Y. 12208
KAY, EARLE B.... 10515 Carnegie Ave., Cleveland, Ohio 44106
KAY, JEROME HAROLD....... 318 South Alvarado St., Los Angeles, Calif. 90057
KEE, JOHN L., JR.......... 3707 Gaston Ave., Dallas, Texas 75246
KELLEY, WINFIELD O.......... Uncas-on-Thames, Norwich, Conn. 06360
KEMLER, R. LEONARD..... 21 Woodland St., Hartford, Conn. 06105
KENT, EDWARD M......... 3500 Fifth Ave., Pittsburgh, Pa. 15213
KERRIN, FREDERICK G.. Toronto General Hospital, Toronto 2, Ontario,
Canada
KESSLER, CHARLES R...... 5 Medical Arts Bldg., Birmingham, Ala. 35205
KEY, JAMES A.170 St. George St., Toronto, Ontario, Canada
KING, RICHARD..... 340 Boulevard, N.E., Atlanta, Ga. 30312
KIRKLIN, JOHN W.... Mayo Clinic, Rochester, Minn. 55902
WALKUP, HARRY E. R. F. D. #1, Worton, Md. 21678
WARE, PAUL F. 124 Russell St., Worcester, Mass. 01609
WATERMAN, DAVID H.... 1918 W. Clinch Ave., Knoxville, Tenn. 37916
WATKINS, ELTON, JR.... 605 Commonwealth Ave., Boston, Mass. 02215
WEBB, WATTS R... Southwestern Medical School, Dallas, Texas 75235
WEINBERO, MILTON, JR.1753 West Congress Parkway, Chicago, Ill. 60612
WEISEL, WILSON..... 2266 North Prospect Ave., Milwaukee, Wis. 53202
WESOLOWSKI, SIGMUND A.. 44 Roosevelt Ave., East Rockaway, N. Y. 11518
WHEAT, MYRON W., JR........ University of Florida College of Medicine, Gainesville, Fla. 32603
WHITE, MARION L., JR.Huntington Bank Bldg., Huntington, W. Va. 25705
WICHERN, WALTER A., JR...... 620 Park Ave., New York, N. Y. 10021
WILKINS, EARLE W., JR...... Zero Emerson Place, Boston, Mass. 02114
WILLIAMS, G. RAINNEY........ 800 Northeast 13th St., Oklahoma City, Okla. 73104
WILSON, JOHN L............ American University of Beirut, Beirut, Lebanon
WILSON, NORMAN J... 175 Glenridge Rd., Schenectady, N. Y. 12302
WITMER, ROBERT H.... 126 East Chestnut St., Lancaster, Pa. 17602
WOLCOTT, MARK W.... 1900 Columbia Pike, Apt. 413, Arlington, Va. 22204
WOLFF, WILLIAM I...... 10 Perlman Place, New York, N. Y. 10003
WOODS, FRANCIS M.135 Francis St., Boston, Mass. 02115
WRIGHT, GEORGE W.11311 Shaker Blvd., Cleveland, Ohio 44104
YLIE, ROBERT H.... 903 Park Ave., New York, N. Y. 10021
YOUNG, W. GLENN, JR.... Box 3396, Duke University Medical Center, Durham, N. C. 27706

Associate Members

ACKMAN, F. DOUGLAS.. 3550 Cote des Neiges, Suite 600, Montreal, Quebec, Canada
ADAMS, JESSE E., JR.966 East 3rd St., Chattanooga, Tenn. 37403
ADELMAN, ARTHUR751 East 63rd St., Kansas City, Mo. 64110
AITCHISON, DAVID B.R. #1, Jerseyville, Ontario, Canada
ASHMORE, PHILLIP G...... 750 West Broadway, Vancouver 9, B. C., Canada
ATTAR, SAFUH M. A.. University Hospital, Baltimore, Md. 21201
AUSTEN, W. GERALD... Massachusetts General Hospital, Boston, Mass. 02114
BESKIN, CHARLES A.3929 Convention St., Baton Rouge, La. 70806
BLAKE, HU AL.531 Wheaton Rd., Fort Sam Houston, Texas 78234
BLAGOE, JOHN B.. 1516 Jefferson Highway, New Orleans, La. 70121
BLUMENSTOCK, DAVID A.. Mary Imogene Bassett Hospital, Cooperstown, N. Y. 13326
BOSQUET, ERNEST O... 5689 Boulevard Rosemont, Montreal, Quebec, Canada
BRAUNWALD, NINA S....... 7006 Longwood Drive, Bethesda, Md. 20014
BRYANT, J. RAY....... 1169 Eastern Parkway, Louisville, Ky. 40217
BURBANK, BENJAMIN... 244 Henry St., Brooklyn, N. Y. 11201
BURDETTE, WALTER J. 4129 Parkview Drive, Salt Lake City, Utah 84117
CAHAN, WILLIAM G.444 East 68th St., New York, N. Y. 10021
CAMPBELL, DANIEL C., JR., COL., USAF, MC....... US Surgical Team, Can Tho, APO San Francisco, Calif. 96215
CANTRELL, JAMES R....... 325 Ninth Ave., Seattle, Wash. 98104
CENTER, SOL637 DuPont Bldg., Miami, Fla. 33131
CHANDLER, JOHN H........ 616 West Forest Ave., Jackson, Tenn. 38301
CHODOFF, RICHARD J... 255 South 17th St., Philadelphia, Pa. 19103
CHUNN, CHARLES F.. 613 Magnolia Ave., Tampa, Fla. 33606
CINCOTTI, JOHN J.. Veterans Adm. Hospital, Sepulveda, Calif. 91340
CLAUSS, ROY H..... 550 First Ave., New York, N. Y. 10016
COHEN, MORLEY....... 295 Dromore Ave., Winnipeg, Manitoba, Canada
COLE, FRANCIS H........ 188 South Bellevue, Memphis, Tenn. 38106
CONNAR, RICHARD G.One Davis Blvd., Tampa, Fla. 33606
COOKE, FRANCIS N.... 25 S.E. Second Ave., Miami, Fla. 33131
COX, WILLIAM V.... 133 Court St., Auburn, Me. 04210
CRACOVANER, ARTHUR J.... 103 East 78th St., New York, N. Y. 10021
CRASTNOPOL, PHILIP.. 1221 East 21st St., Brooklyn, N. Y. 11210
CRECCA, ANTHONY D.376 Roseville Ave., Newark, N. J. 07107
CRUTCHER, RICHARD R.2101 Nicholasville Rd., Lexington, Ky. 40503
CULNER, MORRIS M.2233 Post St., San Francisco, Calif. 94115
DAFOE, COLIN S...... 508 Medical Arts Bldg, Edmonton, Alberta, Canada
DALE, W. ANDREW... 2000 Church St., Nashville, Tenn. 37203
DASCH, FREDERICK W...... Union St. and Avenue C, Schuylkill Haven, Pa. 17972
DEBORD, ROBERT A.. 1240 Jefferson Bldg., Peoria, Ill. 61600
DECKER, ALFRED M., JR.8 Church St., Saranac Lake, N. Y. 12983
DEMATTIEIS, ALBERT..... 2612 Pleasant Valley Blvd., Altoona, Pa. 16601
DEMUTH, WILLIAM E., JR..... 17 S. West St., Carlisle, Pa. 17013
DENIORD, RICHARD N.1911 Thomson Drive, Lynchburg, Va. 24501
DILLARD, DAVID H... 12712 39th N.E., Seattle, Wash. 98155
DILLON, MARCUS L., JR...... 1005 Minerva Ave., Durham, N. C. 27701
DODDS, G. ALFRED........ 807 Broadway, Fargo, N. D. 58102
ELLIS, PAUL R., JR......... 712 North Washington, Suite 411, Dallas, Texas 75210
FELTON, WARREN L., II......... 1211 North Xhartel, Oklahoma City, Okla. 73103
FINNERTY, JAMES........ Brookhaven Medical Arts Bldg., Patchogue, N. Y. 11772
FLYNN, PIERCE J.. 1115 D St., San Bernardino, Calif. 92410
FOSTER, JOHN H........ Vanderbilt University Hospital, Nashville, Tenn. 37203
FRIEDLANDER, RALPH...... Grand Concourse and Mt. Eden Parkway, Bronx, N. Y. 10457
FRIESEN, STANLEY R....... University of Kansas Medical Center, Kansas City, Kan. 66103
FROBESE, ALFRED S... 1425 Scrope Rd., Rydal, Pa. 19046
FULLER, JOSIAH205 West 2nd St., Duluth, Minn. 55802
GADBOYS, HOWARD L... 11 East 100th St., New York, N. Y. 10029
GAHAOAN, THOMAS.... 2799 West Grand Blvd., Detroit, Mich. 48202
GARDNER, RICHARD E.. 490 Post St., Room 1230, San Francisco, Calif. 94102
GARRETT, HARVEY E.. 1200 Moursund Ave, Houston, Texas 77025
GENTSCH, THOMAS O.1550 N.W. 10th Ave., Miami, Fla. 33136
GERBASI, FRANCIS S... 744 David Whitney Bldg., Detroit, Mich. 48226
HALLER, J. ALEX, JR.. Johns Hopkins Hospital, Baltimore, Md. 21205
HALLMAN, GRADY L., JR... 1200 Moursund Ave., Houston, Texas 77025
HAUSMANN, PAUL F....... 2309 West State St., Milwaukee, Wis. 53233
HEANEY, JOHN P........... Hedsuppact (Code 40), APO San Francisco, Calif. 96243
HERINO, ALEXANDER, C., CAPT., MC, USN........ Hedsuppact (Code 40), APO San Francisco, Calif. 96243
HERRERA, RODOLFO...... 11 Calle #2-37, Guatemala City 1, Guatemala
HERTZLER, JACK H. 4377 West Maple Rd., Birmingham, Mich. 48008

HOLDER, THOMAS M. 39th and Rainbow, Kansas City, Kan. 66103

HOOD, R. MAURICE .. 10-A Medical Arts Square, Austin, Texas 78705

HUDSPETH, ALLEN S.. Bowman Gray School of Medicine, Winston-Salem, N. C. 27103

INGRAM, IVAN N.. 655 Sutler St., Suite 603, San Francisco, Calif. 94102

IOVINE, VINCENT M. 2520 L St., N.W., Washington, D. C. 20037

JARETZKI, ALFRED, III. One Gracie Terrace, New York, N. Y. 10028

JAVID, HUSHANO 25 East Washington St., Chicago, Ill. 60602

JENSEN, NATHAN K. 1629 Medical Arts Bidg., Minneapolis, Minn. 55402

JOHNSON, CLIVE R. 811 Fifth Ave., Fort Worth, Texas 76104

JONES, THOMAS W. 715 Minor Ave., Seattle, Wash. 98104

JUDD, ARCHIBALD R. 304 N. Fourth St., Hamburg, Pa. 19526

JUDE, JAMES R. Jackson Memorial Hospital, Miami, Fla. 33136

KAUNITZ, VICTOR H. 3878 Delaware Ave., Tonawanda, N. Y. 14223

KENNEDY, JOHN H.... Metropolitan General Hospital, Cleveland, Ohio 44109

KENNEY, LEO J... 456 Cherry St., S.E., Grand Rapids, Mich. 49503

KESHISHIAN, JOHN M.. 2520 L St., N.W., Washington, D. C. 20037

KING, HAROLD........ 1100 West Michigan St., Indianapolis, Ind. 46207

KRAEFT, NELSON H. 1433 Miccosukee Rd., Tallahassee, Fla. 32303

KUNDERMAN, PHILIP J. 185 Livingston Ave., New Brunswick, N. J. 08902

KUNSTLER, WALTER E. 1538 Sherbrooke St., West, Montreal 25,

QUEBEC, Canada

LAPORET, EUGENE G.. 1180 Beacon St., Brookline, Mass. 02146

LASLEY, CHARLES H...... Hillcrest and Pierce, Clearwater, Fla. 33755

LEE, WILLIAM H., JR.................. 55 Doughty St., Charleston, S. C. 29401

LEFEMINE, ARMAND A.. 85 Jefferson St., Hartford, Conn. 06103

LEIBOVITZ, MARTIN...... 451 Utica Square Medical Center, Tulsa, Okla. 74114

LEMMON, WILLIAM M.. 1500 Vine Street Medical Bldg.,

Philadelphia, Pa. 19102

LEWIS, J. EUGENE, JR.. 634 North Grand Blvd., St. Louis, Mo. 63103

LEWIS, RUBIN M.. 2435 Webster St., Berkeley, Calif. 94705

LILLEHEI, RICHARD C.......... University Hospitals, P. O. 388,

Minneapolis, Minn. 55455

LUCIDO, JOSEPH L........ 634 North Grand Blvd., St. Louis, Mo. 63103

LUI, ALFRED H. F.Wayne County General Hospital, Eloise, Mich. 48132

MACDONALD, NEIL....... Medical Arts Bldg., Windsor, Ontario, Canada

MAHAFEEY, DANIEL E... 1112 Heyburn Bldg., Louisville, Ky. 40202

MANGIARDI, JOSEPH L...... 520 Franklin Ave., Garden City, N. Y. 11530

MARABLE, SAMUEL A.. 410 West Tenth Ave., Columbus, Ohio 43210

MARK, JAMES B. D..... 751 South Bascom Ave., San Jose, Calif. 95128

MASON, JAMES M., III1023 S. 20th St., Birmingham, Ala. 35205

McClenathan, James E.... U.S. Naval Hospital, Bethesda, Md. 20014

MCKEOWN, JOHN J., JR.301 Cedar Grove Rd., Wynnewood, Pa. 19096

MENDELSSOHN, EDWIN....... 1351 West Tabor Rd., Philadelphia, Pa. 19141

MEREDITH, JESSE H.Bowman Gray School of Medicine,
Winston-Salem, N. C. 27103

MILLER, ARTHUR C.... Veterans Adm. Hospital, Roseburg, Ore. 97470

MILLER, CARROLL C.304 Humphrey St., Swampscott, Mass. 01901

MILLER, DON R........ University of Kansas Medical Center,
Kansascity, Kan. 66103

MILLER, DONALD B.Mary Fletcher Hospital, Burlington, Vt. 05401

MITCHEL, BEN F., JR............ 3707 Gaston Ave., Dallas, Texas 75246

MORSE, DRYDEN P.... 302 East Main St., Moorestown, N. J. 08057

MOUSEL, LLOYD H.Swedish Hospital, Seattle, Wash. 98104
NEERKEN, ADRIAN J..... 404 Bronson Medical Center, Kalamazoo, Mich. 49004
NETTERVILLE, RUSH E..... 514 E. Woodrow Wilson Drive, Jackson, Miss. 39216
NEVILLE, WILLIAM E..... Veterans Adm. Hospital, Hines, Ill. 60141
NEWMAN, ROBERT W........ Medical Arts Bldg., Knoxville, Tenn. 37902
NIGRO, SALVATORE L...... 610 Poplar St., Elmhurst, Ill. 60126
OCHSNER, ALTON, JR.1516 Jefferson Highway, New Orleans, La. 70121
OCHSNER, JOHN L.. 1516 Jefferson Highway, New Orleans, La. 70121
O'NEILL, JAMES F.1425 Woodland Rd., Rydal, Pa. 19046
OVERSTREET, JOHN WM.... 508 Hermann Professional Bldg., Houston, Texas 77025
PAUL, JOHN S.... Baker Veterans Adm. Center, Martinsburg, W. Va. 25401
PAYNE, WILLIAM S........ Mayo Clinic, Rochester, Minn. 55901
PEARCE, CHARLES W.1430 Tulane Ave., New Orleans, La. 70112
PENBERTON, ALBERT H.. 2040 West Wisconsin Ave., Milwaukee, Wis. 53203
PERRY, JOHN F., JR..... 1901 Arona Ave., St. Paul, Minn. 55113
PINKHAM, ROLAND D.1120 Cherry St., Seattle, Wash. 98104
PRATT, LAWRENCE A..... U.S.O.M., APO 143, San Francisco, Calif. 94101
QUINLAN, JOHN J....... Nova Scotia Sanatorium, Kentville, Nova Scotia, Canada
RAINER, W. GERALD... 701 E. Colfax Ave., Denver, Colo. 80203
REDO, S. FRANK525 East 68th St., New York, N. Y. 10021
REED, WILLIAM A........ 5931 High Drive, Shawnee Mission, Kan. 66208
RHEINLANDER, HAROLD F... 171 Harrison Ave., Boston, Mass. 02111
ROBBINS, S. GWINSuite 903B, 20 South Dudley St., Memphis, Tenn. 38103
ROBINSON, JOSEPH L....... 320 West Temple St., Los Angeles, Calif. 90012
ROPER, CHARLES L... Barnes Hospital Plaza, St. Louis, Mo. 63110
ROSS, RALEIGH R.2 Medical Arts Square, Austin, Texas 78705
RUSSELL, PAUL S.Massachusetts General Hospital, Boston, Mass. 02114
RYAN, BERNARD J.. 375 East Main St., Bay Shore, N. Y. 11706
RYAN, THOMAS C.... 90 Shenango St., Greenville, Pa. 16125
SANES, GILMORE M.410 South Craig St., Pittsburgh, Pa. 15213
SAUVAGE, LESTER R.... 1008 Summit Ave., Seattle, Wash. 98104
SAWYERS, JOHN L.Nashville General Hospital, Nashville, Tenn. 37210
SCHWARTZ, SEYMOUR I.. 260 Crittenden Blvd., Rochester, N. Y. 14620
SCOTT, HENRY J.... 3350 Cote des Neiges, Suite 540, Montreal 25, Quebec, Canada
SCOTT, STEWART M. One Northwood Road, Asheville, N. C. 28803
SELMAN, MORRIS W.2302 Meadowwood Drive, Toledo, Ohio 43602
SEYBOLD, WILLIAM D.6624 Fannin St., Houston, Texas 77025
SIMEONE, FIORINDO A...... 3395 Scranton Rd., Cleveland, Ohio 44109
SKINNER, ALEXANDER M. Galetlon, Pa. 16922
SMYTH, NICHOLAS P. D...... 110 Irving St., N.W., Washington, D. C. 20010
SNYDER, HOWARD E....... 103'a E. Ninth Ave., Winfield, Kan. 67156
SPEAR, HAROLD C.1550 N.W. Tenth Ave., Miami, Fla. 33136
STAYMAN, JOSEPH W.8815 Germantown Ave., Philadelphia, Pa. 19118
STENSTROM, JOHN D.220-1105 Pandora Ave., Victoria, British Columbia, Canada
SULLIVAN, HERBERT J....... Medical Arts Bldg., Hamilton, Ontario, Canada
SWENSON, ORVARChildren's Memorial Hospital, Chicago, Ill. 60614
TEST, FREDERICK C., II..... 20252 Meyers Road, Detroit, Mich. 48235
THOMAS, GEORGE I..... 715 Minor Ave., Seattle, Wash. 98104
THOMSON, NORMAN B., JR..... 219 Bryant St., Buffalo, N. Y. 14222
THOWER, WENDELL B. 171 Harrison Ave., Boston, Mass. 02111
TILLOU, DONALD J.... 311 West Church St., Elmira, N. Y. 14901
TRICERRI, FERNANDO E.. 3 Chemin Mornex, Lausanne, Switzerland
TRUMMER, MAX J........ U.S. Naval Hospital, Philadelphia, Pa. 19145
URSCHEL, HAROLD C., JR......... 3810 Swiss Avenue, Dallas, Texas 75204
VAN FLEIT, WILLIAM E.. 401 Jefferson Medical Arts Bldg.,
South Bend, Ind. 46617
WALKER, GEORGE R.... 289 Cedar St., Sudbury, Ontario, Canada
WATKINS, DAVID H.Denver General Hospital, Denver, Colo. 80204
WHITESIDE, WILLIAM C.415 Medical Arts Bldg., Victoria,
British Columbia, Canada
WILDER, ROBERT J... 1801 Eutaw Place, Baltimore, Md. 21217
WILLMAN, V. L.1325 South Grand Blvd., St. Louis, Mo. 63104
WILSON, HUGH E., III... 712 North Washington, Dallas, Texas 75246
YOUNG, WILLIAM P.1300 University Ave , Madison, Wis. 53706

Senior Members
ADA, ALEXANDER E. W.. 139 East 94th St., New York, N. Y. 10025
ADAMS, HERBERT D.. 605 Commonwealth Ave., Boston, Mass. 02215
ADAMS, WILLIAM E.. 950 E. 59th St., Chicago, Ill. 60637
AMBERSON, J. B............ Bellevue Hospital, New York, N. Y. 10010
AUFSES, ARTHUR H.. 165 East 72nd St., New York, N. Y. 10021
BADGER, THEODORE L.... 264 Beacon St., Boston, Mass. 02116
BALLON, DAVID H............... 1538 Sherbrooke St., N., Montreal 25, Quebec, Canada
BARKLEY, HOWARD T.4414 Montrose Blvd., Houston, Texas 77006
BARNWELL, JOHN B..... R.D 2, Blairstown, N. J. 07825
BECK, CLAUDE S... 2065 Adelbert Rd., Cleveland, Ohio 44106
BEECHER, HENRY K.... Massachusetts General Hospital, Boston, Mass. 02114
BENEDICT, EDWARD B.... Massachusetts General Hospital,
Boston, Mass. 02114
BENSON, CLIFFORD D.......... 1515 David Whitney Bldg., Detroit, Mich. 48226
BERRY, FRANK B.... 169 East 69th St., New York, N. Y. 10021
BETTS, REEVE H.... Room 1536, 475 Riverside Dr., New York, N. Y. 10027
BIRD, CLARENCE E.64 Alfred Stone Rd., Providence, R. I. 02906
BISGARD, J. DEWEY......... 422 Doctors Bldg., Omaha, Neb. 68131
BLOCK, ROBERT G........ Montefiore Hospital, New York, N. Y. 10067
BORTONE, FRANK........ 2765 Hudson Blvd. , Jersey City, N. J. 07306
BRADSHAW, HOWARD H...... Bowman Gray School of Medicine,
Winston-Salem, N. C. 27103
BRANTIGAN, OTTO C........ 104 West Madison St., Baltimore, Md. 21201
BUCKINGHAM, WILLIAM W.314 Professional Bldg.,
Kansas City, Mo. 64106
CARLSON, HERBERT A... 21 Seventh Place, Long Beach, Calif. 90020
CARR, DUANE20 S. Dudley St., Memphis, Tenn. 38103
CARTER, B. NOLAND........ Madeira, Cincinnati, Ohio 45243
CHURCHILL, EDWARD D.269 Prospect St., Belmont, Mass. 02178
CLAGETT, O. THERON... Mayo Clinic, Rochester, Minn. 55902
CLERF, LOUIS H.5575 8th Avenue, North, St. Petersburg, Fla. 33702
COLE, DEAN B........... Professional Bldg., Richmond, Va. 23219
COOPER, DAVID A..... 1520 Spruce St., Philadelphia, Pa. 19102
COURNAND, ANDRE.......... 27th Street and First Ave., New York, N. Y. 10016
CRIMM, PAUL D............. Boehne Hospital, Evansville, Ind. 47712
DAVIDSON, LOUIS R....... 1025 Fifth Ave., New York, N. Y. 10028
DAVIS, EDGAR W............... 1150 Connecticut Ave., Washington, D. C. 20036
WATSON, WILLIAM L.. 340 East 72nd St, New York, N. Y. 10021
WEINBERO, JOSEPH A.... Veterans Adm. Hospital, Long Beach, Calif. 90801
WELLES, EDWARD S.... 20 Church St., Saranac Lake, N. Y. 12983
WILLAUER, GEORGE...... 1930 Chestnut St., Philadelphia, Pa. 19103
WILLIAMS, MARK H........ 63 Front St, Binghamton, N. Y. 13905
WILSON, JULIUS L........ 924 Canyon Rd., Santa Fe, N. Mex. 87501
WIPER, THOMAS B.. 909 Hyde St, Suite 615, San Francisco, Calif. 94109

Members Deceased
RALPH ADAMS
R. G. FERGUSON
GEORGE M. CURTIS
JAMES H. FORSEE
H. MORRISTON DAVIES
LAWRENCE M. SHEFTS
GEORGES DESHAIES

THE AMERICAN ASSOCIATION FOR THORACIC SURGERY
Charter Members
June 7, 1917

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Wyllis Andrews</td>
<td>Arthur A. Law</td>
</tr>
<tr>
<td>John Auer</td>
<td>William Lerche</td>
</tr>
<tr>
<td>Edward R. Baldwin</td>
<td>Howard Lilienthal</td>
</tr>
<tr>
<td>Walter M. Boothby</td>
<td>William H. Luckett</td>
</tr>
<tr>
<td>William Branower</td>
<td>Morris Manges</td>
</tr>
<tr>
<td>Harlow Brooks</td>
<td>Walton Martin</td>
</tr>
<tr>
<td>Lawrason Brown</td>
<td>Rudolph Matas</td>
</tr>
<tr>
<td>Kenneth Bulkley</td>
<td>E. S. McSweeney</td>
</tr>
<tr>
<td>Alexis Carrel</td>
<td>Samuel J. Melter</td>
</tr>
<tr>
<td>Norman B. Carson</td>
<td>Willy Meyer (Founder)</td>
</tr>
<tr>
<td>J. Frank Corbett</td>
<td>James Alexander Miller</td>
</tr>
<tr>
<td>Armistead C. Crump</td>
<td>Robert T. Miller</td>
</tr>
<tr>
<td>Charles N. Dowd</td>
<td>Fred J. Murphy</td>
</tr>
<tr>
<td>Kennon Dunham</td>
<td>Leo S. Peterson</td>
</tr>
<tr>
<td>Edmond Melchior Eberts</td>
<td>Eugene H. Pool</td>
</tr>
<tr>
<td>Max Einhorn</td>
<td>Walther I. Rathbun</td>
</tr>
<tr>
<td>Herman Fischer</td>
<td>Martin Rehling</td>
</tr>
<tr>
<td>Albert H. Garvin</td>
<td>B. Merrill Ricketts</td>
</tr>
<tr>
<td>Nathan W. Green</td>
<td>Samuel Robinson</td>
</tr>
<tr>
<td>John R. Hartwell</td>
<td>Charles I. Scudder</td>
</tr>
<tr>
<td>George I. Heuer</td>
<td>William H. Stewart</td>
</tr>
<tr>
<td>Chevalier Jackson</td>
<td>Franz Torek</td>
</tr>
<tr>
<td>H. H. Janeway</td>
<td>Martin W. Ware</td>
</tr>
<tr>
<td>James H. Kenyon</td>
<td>Abraham O. Wilensky</td>
</tr>
<tr>
<td>Adrian V. S. Lambert</td>
<td>Sidney Yankauer</td>
</tr>
</tbody>
</table>
Meetings of the American Association for Thoracic Surgery

1918-Chicago
President, Samuel J. Meltzer

1919-Atlantic City
President, Willy Meyer

1920-New Orleans
President, Willy Meyer

1921-Boston
President, Rudolph Matas

1922-Washington
President, Samuel Robinson

1923-Chicago
President, Howard Lilienthal

1924-Rochester, Minn
President, Carl A. Hedblom

1925-Washington
President, Nathan W. Green

1926-Montreal
President, Edward W. Archibald

1927-New York
President, Franz Torek

1928-Washington
President, Evarts A. Graham

1929-St. Louis
President, John L. Yates

1930-Philadelphia
President, Wyman Whitemore

1931-San Francisco
President, Ethan Flagg Butler

1932-Ann Arbor
President, Frederick T. Lord

1933-Washington
President, George P. Muller

1934-Boston
President, George J. Heuer

1935-New York
President, John Alexander

1936-Rochester, Minn
President, Carl Eggers

1937-Saranac Lake
President, Leo Eloesser

1938-Atlanta
President, Stuart W. Harrington

1939-Los Angeles
President, Harold Brunn

1940-Cleveland
President, Adrian V. S. Lambert

1941-Toronto
President, Fraser B. Gurd

1944-Chicago
President, Frank S. Dolley

1946-Detroit
President, Claude S. Beck

1947-St. Louis
President, I. A. Bigger

1948-Quebec
President, Alton Ochsner

1949-New Orleans
President, Edward D. Churchill

1950-Denver
President, Edward J. O'Brien

1951-Atlantic City
President, Alfred Blalock

1952-Dallas
President, Frank B. Berry

1953-San Francisco
President, Robert M. Janes

1954-Montreal
President, Emile Holman

1955-Atlantic City
President, Edward S. Welles

1956-Miami Beach
President, Richard H. Meade

1957-Chicago
President, Cameron Haight

1958-Boston
President, Brian Blades

1959-Los Angeles
President, Michael E. De Bakey

1960-Miami Beach
President, William E. Adams

1961-Philadelphia
President, John H. Gibbon, Jr.

1962-St. Louis
President, Richard H. Sweet (Deceased 1-11-62)

President, O. Theron Clagett

1963-Houston
President, Julian Johnson

1964-Montreal
President, Robert E. Gross

1965-New Orleans
President, John C. Jones